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One of these talks is not like the others…

• Technologies in this session provide information highly relevant for weather
• This talk describes information technology for weather formulation
• Rapidly expanding trade space – what is needed?

Which instruments? Combinations/constellations? Accuracy?
• We have developed a system that is designed to more thoroughly and 

efficiently explore the science trade-space for new missions. 
• It is flexible, parallelizes over diverse architectures, and includes several 

robust techniques with which to measure uncertainty. 
• When combined with tools (e.g., TAT-C) that assess sampling needs (orbits, 

swaths, etc) it is now possible to evaluate a much larger number of options.
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Scientific Challenge

• Clouds and precipitation are central to weather and climate
• After decades of space-borne measurements, 

key processes are still missing
• Goal: design a new observing system (e.g. ACCP*)

• Address specific science objectives
• Consider the vast array of possible measurements
• Rigorously quantify uncertainties
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*Aerosol, Clouds, Convection, and Precipitation https://science.nasa.gov/earth-science/decadal-accp
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Technical Challenge

• The design trade-space is large and clouds are diverse
• The dimensionality of the design problem is immense

• Multiple different geophysical scenarios (different cloud types)
• Diversity of measurement types 

(active, passive, single-point, distributed)
• Multiple sources of uncertainty 

(instrument noise, forward models, ambiguity)
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Solution: Accelerate OSSEs

Any observing system simulation experiment (OSSE) 
requires at least four components:
1. Nature run: Realistically represent the real world

Convection in Nature Run

Convection in Nature

Simulation of Convection over Amazon

GOES-16 Observations of Convection over Amazon
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Solution: Accelerate OSSEs

Any observing system simulation experiment (OSSE) 
requires at least four components:
1. Nature run: Realistically represent the real world
2. Instrument simulators: Synthetic measurements
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Solution: Accelerate OSSEs

Any observing system simulation experiment (OSSE) 
requires at least four components:
1. Nature run: Realistically represent the real world
2. Instrument simulators: Synthetic measurements
3. Quantify uncertainty: Sources of noise and error

Measurement Uncertainty
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Solution: Accelerate OSSEs

Any observing system simulation experiment (OSSE) 
requires at least four components:
1. Nature run: Realistically represent the real world
2. Instrument simulators: Synthetic measurements
3. Quantify uncertainty: Sources of noise and error
4. Assess impact*: Did observations meet science 

and applications goals and objectives?

*NWP (weather forecast OSSE) is just one example of impact. OSSEs must 
grow to encompass advances in knowledge and traceability to applications.

2017 EARTH SCIENCE
DECADAL SURVEY
DESIGNATED OBSERVABLE
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Parallel OSSE Toolkit for Mission Design

Clusters and HPC

Cloud Computing

Standalone Workstation
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Example 1: Uncertainty Inherent in Clouds

10

• Accurate estimates of cloud 
properties and evolution are 
important
• Precipitation
• Atmospheric dynamics
• Earth’s radiative balance
• Chemical reactions

• Many processes of interest are 
governed by cloud microphysics:
• Phase change, collisions, etc
• Particle size, number, and shape

University of Manchester
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Example 1: Uncertainty Inherent in Clouds
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University of Manchester

Tim Garrett, Univ. Utah
http://www.inscc.utah.edu/~tgarrett/Snowflakes/Gallery/

§ There is a diversity of available 
remote sensing measurements

§ All are sensitive to some degree to 
cloud microphysics

§ What are the measurement 
requirements for successfully 
observing cloud properties and 
processes?
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Example 1: Uncertainty Inherent in Clouds

• Quick example: run a radar simulator using two different sets of ice 
shapes (spheres vs multiple habits)
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Example 1: Uncertainty Inherent in Clouds

• Quick example: run a radar simulator using two different sets of ice 
shapes (spheres vs multiple habits)
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Example 1: Uncertainty Inherent in Clouds

Inputs:
• Nature run profiles
• Range of uncertainty

Experiment Configuration:
• 2 input model profiles
• 3 radar frequencies (Ku, Ka, W)
• 5 uncertain parameters, 11 possible values each 
• 2 x 3 x 115 = 966,306 forward model runs
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~106 Forward Model Runs

60+ hours sequential
2 hours parallel 
(40 cores) 36x speedup

Outputs:
• Ensemble of possible radar profiles for 

each input model profile and frequency
• Improved understanding of uncertainty 

in radar observations of convection

Size Distribution Parameters

Less Rain and SnowMore Rain and Snow

Posselt et al. 2021 (IGARSS)



Example 2: Shallow Cloud Retrieval
• Shallow convection is crucial for climate 

(hydrologic cycle and cloud-radiation 
feedbacks)

• Rain retrievals are challenging: sensitive 
to radar design parameters (sensitivity, 
footprint, surface clutter)

• Constructed an optimal estimation 
(Bayesian) retrieval based on the 
CloudSat algorithm

• Conducted an initial test of retrieval 
uncertainty using 6000 shallow rain 
profiles from nature run
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Parallel OSSE System (ParOSSE) Performance

• Sensitivity and retrieval experiments are 
embarrasingly parallel (can be done nearly 
independently)
• ParMAP library makes ParOSSE deployable on 

a single machine (Par), cluster (Dask), and 
AWS Lambdas
• Our initial tests have indicated excellent 

scaling efficiency*

*Efficiency > 1 is due to I/O limitations with a single CPU
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ParOSSE Capability to Date

• Pluggable nature runs and instrument simulators 
enable a wide range of trade space studies
• Flexible parallelism enables experiments on diverse 

architectures and more thorough exploration of 
uncertainty in measurements and retrievals
• Have implemented various sensitivity analysis 

techniques
• Method of Morris, Sobol sensitivity, Monte Carlo, grid search

• Retrievals can utilize several Bayesian methodologies
• Optimal estimation, MCMC, ensemble Kalman filter, 

Gamma-Inverse Gamma filter
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Future Directions: Span the SATM?

Can we quantify ability to meet science and 
applications goals and objectives?
Science:
• Quantify state of knowledge – sources of uncertainty and relevant variables?
• Models as a laboratory, and ensembles as the tool. 
• ParOSSE is flexible - spawn ensembles of process simulations and assess reduction in 

uncertainty (metrics from information theory, ensemble forecasting, etc)
Applications:
• Map from GV uncertainty to uncertainty in stakeholder quantities of interest (e.g., rainfall 

duration and intensity vs. needs of reservoir managers)
• Note: NOAA’s ASPEN system considers a large database of user-defined requirements and 

then quantifies observing system effectiveness by inputting expected GV uncertainty.
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Example: Convection-Environment Interaction

• Which observations are necessary to improve 
state of knowledge of convective storms?
• First: determine which are the most 

important control variables
• How? Models as a laboratory

Derek.Posselt@jpl.nasa.gov 2021 Earth Science Technology Forum 21

Cross-section through ensemble of 25 simulations of 
deep convection, showing transport of pollution from 
the boundary layer upward into the free troposphere.

• This is a small number of runs of one case, 
each with a slightly different environment
• Can we scale up to many types of convection 

in many different environments?
• ParOSSE’s flexible configuration makes this 

straightforward
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